Infrared Study of NO Adsorption and Reduction with C_3H_6 in the Presence of O_2 over CuO/Al₂O₃

Yawu Chi and Steven S. C. Chuang¹

Department of Chemical Engineering, The University of Akron, Akron, Ohio 44325-3906

Received June 4, 1999; revised October 19, 1999; accepted October 19, 1999

NO, NO/O₂, NO₂, and NO₂/O₂ adsorption on CuO/Al₂O₃ and selective catalytic reduction (SCR) of NO by C₃H₆ in the presence of 2% O2 were investigated by infrared spectroscopy coupled with mass spectroscopy to provide insight into the mechanism of NO adsorption and reduction. Adsorption studies show that NO/O2 adsorption at 298-723 K led to rapid formation of Cu²⁺<0>N and gradual formation of adsorbed (NO3)2; NO2/O2 adsorption led to immediate formation of $(NO_3^-)_2$ and gradual formation of $Cu^{2+}-0_{U^{2+}-0} > N-0$, $Cu^{2+} <_{0}^{0} > N-O$, and $Cu^{2+} <_{0}^{0} > N$; NO₂ adsorption alone did not produce (NO₃)₂. Temperature-programmed desorption shows that adsorbed (NO3)2 decomposed to N2, N2O, and NO at 644 K. Pulsing C₃H₆ into NO/O₂ over CuO/Al₂O₃ not only removed (NO₃)₂ but also reduced Cu^{2+} to Cu^+/Cu^0 , resulting in the formation of N₂, N₂O, CO₂, and H₂O. Steady-state NO/O₂/C₃H₆ reaction on CuO/Al₂O₃ produced adsorbed C₃H₇-NO₂, CH₃COO⁻, Cu⁺-NCO, Cu⁰-CN, and Cu⁺-CO species, and N₂, CO₂, and H₂O as products. Dynamic behavior of adsorbates under transient conditions suggests that the steady-state SCR reaction may proceed via adsorbed C₃H₇-NO₂, Cu⁰-CN, and Cu⁺-NCO intermediates on Cu⁰/Cu⁺ surfaces. This study demonstrates that the pulse and steady-state SCR follows different reaction pathways toward N₂ and CO₂ products. © 2000 Academic Press

Key Words: NO adsorption; nitrate formation; NO/O₂ adsorption; selective catalytic reduction; CuO/Al₂O₃; reaction mechanism; reaction intermediates; infrared spectroscopy; adsorbed nitrate.

INTRODUCTION

The development of an effective catalyst for NO decomposition and reduction in an oxidizing environment has been one of the most challenging tasks in environmental catalysis (1–21). Voluminous work has been done on catalyst screening and characterization to unravel the detrimental effect of oxygen in the NO decomposition to N_2 and O_2 (3–10). Addition of a reducing agent is required for the selective conversion of NO to N_2 in the presence of O_2 (3–5, 7, 8, 12–18). CuO/Al₂O₃ was selected in the present study as a model catalyst for the NO adsorption and reduction studies for the following reasons: (i) the Cu surface state has been well characterized by examination of the infrared spectra of adsorbed CO and NO (22–25); (ii) Cu-exchanged ZSM-5 has been shown to be the most active NO decomposition catalyst; and (iii) Cu/Al₂O₃ has exhibited activity for NO reduction with CO and NH₃ (26, 27). Since the selective catalytic reduction (SCR) of NO_x is a redox reaction, a fundamental understanding of the Cu oxidation states and their adsorbates holds the key to the development of a NO decomposition and reduction mechanism and the determination of the limitation of CuO/Al₂O₃ for these reactions.

The objective of this study is to determine the structure and dynamic behavior of adsorbates as well as the oxidation states of adsorption sites for NO adsorption and reduction with C_3H_6 in the presence of O_2 over CuO/Al₂O₃. Infrared spectroscopy (IR) coupled with mass spectroscopy (MS) is used to determine the sequence of adsorbate and product formation for elucidation of reaction pathways and the nature of sites. The adsorbates observed in this study include $C_{Cu^{2+}-O}^{Cu^{2+}-O}$ N–O, $Cu^{2+} <_{O}^{O}$ N–O, $Cu^{2+} <_{O}^{O}$ N, and Cu^{2+} $(NO_3^-)_2$ during the NO/O₂ adsorption as well as *R*-NO₂ $(R = alkyl group), CH_3COO^-, Cu^+-NCO, Cu^0-CN, and$ Cu⁺-CO species during the steady-state NO/O₂/C₃H₆ reaction. It has been reported that the SCR with hydrocarbons and/or NH₃ produced $\stackrel{Cu^{2+}-O}{Cu^{2+}-O}$ >N–O, $Cu^{2+} < \stackrel{O}{O}$ >N–O, $Cu^{2+} < O^{N} > N$, and $Cu^{2+} (NO_3)_2$ on Cu/Al_2O_3 (13, 27, 29); R-NO₂ and/or R-ONO on Cu-Cr/Al₂O₃ (29), Pt/SiO₂ and Ce-ZSM-5 (3, 30, 31), Co-ZSM-5 (5, 32), Cu-ZSM-5 (33), and Na–H–mordenite (34); CH_3COO^- on Pt/Al_2O_3 (35) and Al_2O_3 (36); isocyanate (-NCO) on Cu/Al₂O₃ (28, 37), Cu-Cs/Al₂O₃ (38), Cu-ZSM-5 (13), Rh-Al-MCM-41 (39), and Pt/Al₂O₃ (35); and cyanide (-CN) species on Cu/Al₂O₃ (28), Pt/Al₂O₃ (35), Cu/ZrO₂ (40), and Co–ZSM-5 (41). The knowledge of adsorbate reactivities and their dynamic behavior may serve as a basis for the development of a comprehensive mechanism for the SCR of NO_x with hydrocarbons.

¹ To whom correspondence should be addressed. E-mail: schuang@uakron.edu. Fax: (330) 972-5856.

EXPERIMENTAL

Catalyst Precursor Preparation and Infrared (IR) Characterization

Copper nitrate/ γ -Al₂O₃ was prepared by impregnation of γ -Al₂O₃ (Alfa Products, SA = 100 m²/g, pore size = 0.01-0.02 μ m) with Cu(NO₃)₂ · 3H₂O (Strem Chemicals) solution. The sample, denoted as Cu(NO₃)₂ · H₂O/Al₂O₃, was dried overnight in air at 298 K. The Cu loading on the catalyst was 2.7 wt%. The amount of water was not determined. To obtain high resolution of infrared spectra for $Cu(NO_3)_2$, both $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ and $Cu(NO_3)_2 \cdot 3H_2O$ were mixed with KBr (Alfa Products, KBr spectrograde, ultrapure) at a KBr/catalyst weight ratio of 10:1, and then were pressed into self-supporting disks for infrared characterization at 298 K. Cu(NO₃)₂ · H₂O/Al₂O₃, which was not mixed with KBr, was further characterized by IR spectroscopy coupled with temperature-programmed decomposition (TPDE) at a heating rate of 10 K/min from 298 to 773 K in a 75 cm³/min He flow. The surface state of CuO/Al₂O₃ before and after NO/O₂ adsorption and SCR was characterized by IR spectroscopy with pulse CO chemisorption at 298 K.

Temperature-Programmed Desorption (TPD) of NO_x Adsorbates over CuO/Al₂O₃

The CuO/Al₂O₃ produced from temperature-programmed decomposition of Cu(NO₃)₂ · H₂O/Al₂O₃ was used as the catalyst in this study. The CuO/Al₂O₃ was pretreated in a He flow at 773 K for 1 h and cooled to the desired temperature prior to each experiment. NO_x (i.e., NO, NO_2 , and NO_3^-) adsorbates on CuO/Al₂O₃ were produced by flowing various NO_x reactant gas mixtures (0.08%) $NO + 2\% O_2 + 97.92\%$ He; 1.06% $NO_2 + 98.94\%$ He; $0.08\% \text{ NO}_2 + 2\% \text{ O}_2 + 97.92\%$ He) at 298, 523, 623, and 723 K. Gases used were 1.01% NO with He balance (AGA Specialty Gas), 99.99% O₂ (Praxair), 99.999% He (Praxair), C₃H₆ (LINDE Specialty Gas), and 99.994% CO (Praxair). Infrared analysis found less than 0.02% N₂O in the certified 1.01% NO. TPD of NO_x adsorbates on CuO/Al₂O₃ was performed from the adsorbing temperature (298 and 523 K) to 773 K at a heating rate of 10 K/min in a 75 cm³/min He flow.

Pulsing C₃H₆ into the Steady-State NO/O₂ Flow and Steady-State SCR Reaction of NO/O₂/C₃H₆ over CuO/Al₂O₃

Upon both adsorbate and reactant/product concentrations reaching the steady state during a constant NO/O₂ flow, selective catalytic reduction (SCR) of NO was carried out by pulsing 1 cm³ of C₃H₆ into the steady-state flow of NO and O₂ at 0.1 MPa and 523, 623, and 723 K. Three consecutive pulses of 1 cm³ of C₃H₆ were used in the SCR of NO to increase the NO conversion. Steady-state SCR reaction of 0.08% NO + 2% O₂ + 0.2% C₃H₆ + 97.72% He on CuO/Al₂O₃ was also conducted at a total flow rate of 75 cm³/min, 0.1 MPa, and 523, 623, 673, 698, 723, and 773 K. The O₂-to-NO ratio of 25 used in this study is in the lower region of the exhaust composition for lean burn combustion engines and power plants.

Infrared Spectroscopy, Mass Spectrometer, and X-Ray Diffraction (XRD) Analyses

Variation in adsorbate concentration was determined by using a Nicolet 5SCX FTIR spectrometer at 4 cm⁻¹ resolution. Infrared spectra were obtained by 32 coadded scans, which take 4 s for completion. Each coadded spectrum collected during TPD represents the average spectra of adsorbates during 1 K increases in temperature. Coadding a large number of scans increases the signal-to-noise ratio, but requires a longer sampling time, resulting in the loss of transient information. Hence, 32 coadded scans were used in the present study. Variation in reactant/product concentration was determined by using a Balzers QMG 112 and a Prisma QMS 200 mass spectrometer (MS) (Pfeiffer Vacuum Technology). The mass-to-charge ratios (m/e, i.e., amu) for MS monitoring were m/e = 4 for He, m/e = 28 for N₂ and CO, m/e = 12 (CO fragment) for separation of CO from m/e = 28, m/e = 30 for NO, m/e = 32 for O₂, m/e = 44 for N_2O and CO_2 , m/e = 22 (CO₂ double ionization) for separation of CO₂ from m/e = 44, m/e = 46 for NO₂, and m/e = 41for C₃H₆. The contribution of N₂O and NO₂ to m/e = 30 was determined by comparing the relative intensities of the fragment and parent ions of the calibrated N₂O, NO, and NO₂ pulse responses; the contribution of CO_2 to m/e = 28 was found to be negligible. The MS profiles of the reactants and products were obtained by multiplying their MS intensities by their calibration factors (42). The crystalline phases of CuO/Al₂O₃ were determined by using a Philips Analytical X-ray diffractometer with Cu $K\alpha$ radiation.

RESULTS

IR Spectra of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ and $Cu(NO_3)_2 \cdot 3H_2O$

Figure 1 compares the IR spectra of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ and $Cu(NO_3)_2 \cdot 3H_2O$ at 298 K. The IR spectrum of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ was obtained by subtracting the Al_2O_3/KBr spectrum from the $Cu(NO_3)_2 \cdot H_2O/Al_2O_3/KBr$ spectrum; the IR spectrum of $Cu(NO_3)_2 \cdot 3H_2O$ was obtained by subtracting the KBr spectrum from the $Cu(NO_3)_2 \cdot H_2O/KBr$ spectrum. KBr has high IR transmission as shown in the inset. Bands below 1200 cm⁻¹ for $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ were blocked by the Al_2O_3 support. Bands in the 1616–1636 cm⁻¹ and 3400–3500 cm⁻¹ regions are due to H_2O . $Cu(NO_3)_2 \cdot 3H_2O$ exhibited bands at 1767, 1385, and 823 cm⁻¹ which is consistent with those reported

FIG. 1. IR spectra of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ and $Cu(NO_3)_2 \cdot 3H_2O$ (infrared spectra of pure KBr as background and empty cell were inserted) at 298 K.

for Cu(NO₃)₂ (43–45). The band assignment is shown in Fig. 1. Cu(NO₃)₂ · H₂O on Al₂O₃ exhibited a strong triplet in the 1313–1438 cm⁻¹ region, which may be due to the distortion from the D_{3h} of a NO₃⁻ species to the C_{2v} of a coordinated nitrato–ONO₂ species (43–45).

Temperature-Programmed Decomposition (TPDE) of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$

Figure 2 shows the normalized MS intensity product profiles and *in situ* IR spectra taken during the temperatureprogrammed decomposition (TPDE) of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$. Absorbance spectra of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ during TPDE were obtained by ratioing the transmission spectra of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ to that of CuO/Al_2O_3 at the specific temperature. CuO/Al_2O_3 transmission spectra, which were reserved as background spectra, were collected while the reactor cooled from 773 to 298 K in a He flow after TPDE. $Cu(NO_3)_2 \cdot H_2O$ exhibited a broad band in the 1305–1442 cm⁻¹ region, in contrast to the clear triplet bands observed for Cu(NO₃)₂ · H₂O/Al₂O₃ mixed with KBr in Fig. 1. Dilution of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ with KBr in Fig. 1 increased the resolution of the triplet bands due to distorted $[NO_3^-]_2$. To avoid the complication from NO adsorption on KBr, Cu(NO₃)₂ · H₂O/Al₂O₃ and CuO/Al₂O₃ resulting from Cu(NO₃)₂ · H₂O/Al₂O₃ TPDE were not mixed with KBr during TPD and reaction studies. $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ began to decompose at 360 K, releasing H₂O, NO, N₂O, N₂, O₂, and NO₂. The MS intensity profiles were normalized with the calibration factors of each species so that the shaded area under the MS profiles corresponded to the product amount in micromoles. Evolution of adsorbed H₂O corresponds to the gradual decrease of the water band at 1620–1667 cm^{-1} . The peak temperature for the H₂O MS profile at 465 K is lower than those for NO, N_2O_1 , and N_2 (at 485 K). The formation of these gaseous

FIG. 2. (a) Normalized product MS profiles and (b) *in situ* IR spectra taken during the Cu(NO₃)₂ · H₂O/Al₂O₃ decomposition from 298 to 773 K at a heating rate of 10 K/min. (H₂O MS profile was decreased by multiplying by $\frac{1}{2}$.)

species corresponding to a significant drop in the distorted $[NO_3^-]_2$ intensity indicates the decomposition of $Cu(NO_3)_2$ on Al_2O_3 to NO, N_2O , N_2 , O_2 , and NO_2 . The amount of decomposed product is indicated in micromoles in Fig. 2a, giving a N/O ratio of 1.3 and a NO/O_2 ratio of 7.8. It is indeed surprising to observe the formation of a significant amount of N_2 and O_2 . Increasing the temperature to 673 K produced a well-defined band at 1365 cm⁻¹ with a shift to 1370 cm⁻¹ at 773 K.

No direct information is available to distinguish the difference between the species giving broad bands at 1422, 1380, and 1305 cm⁻¹ and the adsorbed species giving the single band at 1365–1370 cm⁻¹. We tentatively assign the singly symmetric band at 1365–1380 cm⁻¹ to $(NO_3^-)_2$ since it resembles in some aspects that of $Cu^{2+}(NO_3^-)_2$. The appearance of this feature at temperatures above 548 K suggests that it is formed from the decomposition product of $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$. To distinguish the difference between the singly symmetric band at 1365–1390 cm⁻¹ and the broad triplet bands in the same region, we denote the former as $(NO_3^-)_2$, the undistorted structure, and the latter as $[NO_3^-]_2$, the distorted structure.

X-ray diffraction analysis (XRD) of the decomposed $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ gave only the γ -Al_2O_3 pattern (not shown). No XRD pattern for CuO or CuO_x was observed, suggesting that $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$ decomposed to highly dispersed Cu oxide (46). The decomposed $Cu(NO_3)_2 \cdot H_2O/Al_2O_3$, denoted as CuO/Al_2O_3 , was used as a catalyst for the NO decomposition and reduction studies. Further characterization of the CuO/Al_2O_3 surface state by IR studies of CO adsorption will be presented and discussed later.

TPD of Adsorbates on CuO/Al₂O₃ from 298/523 to 773 K

Figure 3 shows the normalized product MS intensity profiles and *in situ* IR spectra of adsorbed NO_x species on CuO/Al₂O₃ taken during TPD from 298 to 773 K. Figure 3b shows that exposure of CuO/Al₂O₃ to a 0.08% NO + 2% O₂ + 97.92% He flow at 298 K produced bands

FIG. 3. (a) Normalized product MS profiles and (b) *in situ* IR spectra taken during the TPD of adsorbates (produced from flow of 0.08% NO + 2% O₂ + 97.92% He at 298 K) over CuO/Al₂O₃ from 298 to 773 K at a heating rate of 10 K/min. (N₂O, N₂, O₂, and NO₂ MS profiles were enlarged by multiplying by 5, 10, 5, and 40, respectively.)

at 1403, 1380, and 1337 cm⁻¹, bridging bidentate nitrate $\binom{Cu^{2+}-O}{Cu^{2+}-O}$ >N–O) at 1630 cm⁻¹, chelating bidentate nitrate $(Cu^{2+}+O)$ >N–O) at 1576 cm⁻¹, and the overlapping component of their NO₂ asymmetric vibration with chelating nitro $(Cu^{2+}+O)$ >N) at 1283 cm⁻¹ (15, 16, 47–52). These adsorbates may be associated with Cu²⁺ sites as observed in the CO adsorption studies discussed in the latter part of this study, which showed that the CuO/Al₂O₃ exposed to NO/O₂ contained Cu²⁺ sites. It should be noted that the notation used for these adsorbed NO_x species did not include the charge balance. The charge on Cu²⁺ is expected to be balanced by the surface oxygen anion and adsorbed nitrate/nitro species. The bands at 1403, 1380, and 1337 cm⁻¹ resembled those observed on Cu(NO₃)₂ · H₂O/Al₂O₃, and can be assigned to the NO₂ stretch of a distorted [NO₃⁻]₂ adsorbed on Cu²⁺.

The distorted $[NO_3^-]_2$ adsorbed on CuO/Al₂O₃ began decomposing at 364 K, releasing NO, N₂O, N₂, and O₂ (Fig. 3). The amount (micromoles) of products released, equivalent to the area under the product profile, is also

indicated Fig. 3a. Evolution of NO and O_2 , the primary products in the 364-640 K region, corresponds to the gradual decrease in the IR intensities of $C_{u^2+-O}^{u^2+-O}$ N-O at 1630 cm⁻¹, [NO₃]₂ at 1380 cm⁻¹, and $Cu^{2+}<_{O}^{O}$ N at 1262–1278 cm^{-1} . Increasing the temperature to 523 K caused the broad distorted [NO3]2 band to sharpen. Increasing the temperature to 588 K produced $Cu^{2+}<_{O}^{O}$ > N–O at 1576 cm⁻¹. $Cu^{2+}<_{O}^{O}$ > N–O, also observed during Cu(NO₃)₂/Al₂O₃ decomposition in the 463–548 K region in Fig. 2b, could be produced from the readsorption of NO and O₂. In fact, NO/O₂ adsorption on CuO/Al₂O₃ at 523 K confirmed the formation of dominant $Cu^{2+} < 0^{O} >$ N-O. A further increase in temperature from 588 to 773 K caused the $(NO_3^-)_2$ to shift from 1380 to 1337 cm⁻¹. Evolution of N₂O and a small fraction of N₂ at temperatures above 673 K corresponded to decreases in the IR intensities of both $Cu^{2+} < O_{O} > N-O$ at 1576 cm⁻¹ and $[NO_{3}^{-}]_{2}$ at 1337 cm⁻¹. Comparison of the MS profiles in Fig. 3a with those in Fig. 2a shows that NO and O₂ desorption exhibited similar profiles. The major difference is that N₂O and N₂

FIG. 4. (a) Normalized product MS profiles and (b) *in situ* IR spectra taken during the TPD of adsorbates (produced from flow of 0.08% NO + 2% O₂ + 97.92% He at 523 K) over CuO/Al₂O₃ from 523 to 773 K at a heating rate of 10 K/min. (N₂O, N₂, O₂, and NO₂ MS profiles were enlarged by multiplying by 6, 25, 20, and 40, respectively.)

profiles lagged behind those of NO and O₂ with the presence of $Cu^{2+} <_O^O > N$ -O in the 588–773 K region in Fig. 3a.

Figure 4 shows the normalized product MS intensity profiles and *in situ* IR spectra of adsorbed NO_x species on CuO/Al₂O₃ taken during TPD from 523 to 773 K. Adsorbed (NO₃⁻)₂ at 1380 cm⁻¹, Cu²⁺ <^O₀>N–O at 1576 cm⁻¹, and Cu²⁺ <^O₀>N at 1262 cm⁻¹ produced from NO/O₂ adsorption at 523 K began to decompose at 590 K, releasing NO, N₂O, and N₂ with peak intensities at 644 K. Comparison of product MS profiles and IR spectra of adsorbates in Fig. 4 to those in Fig. 3 suggests that desorption/decomposition of distorted [NO₃⁻]₂, Cu^{2+} -O₂>N–O, and Cu^{2+} <^O₀>N were responsible for O₂ and part of the NO formation at 428 K, while (NO₃⁻)₂ at 1380 cm⁻¹ and Cu²⁺<^O₀>N–O were mainly responsible for the NO, N₂O, and N₂ formation at around 644 K.

Adsorption of NO and O₂ on CuO/Al₂O₃

Figure 5 shows *in situ* IR spectra produced from the coadsorption of 0.08% NO and 2% O₂ at 298, 523, and 623 K as well as 0.08% NO adsorption followed by 2% O₂ at 523 K on CuO/Al₂O₃. Flowing 0.08% NO/2% O₂ over CuO/Al₂O₃ at 298 K produced the chelating nitro Cu²⁺ <_O^O>N at 1262 cm⁻¹, $Cu^{2+}O_{Cu^{2+}O}>N-O$ at 1620 cm⁻¹, and adsorbed NO⁸⁻ at 1836 cm⁻¹. Prolonged exposure to NO/O₂ produced Cu²⁺ <_O^O>N-O at 1576 and 1283 cm⁻¹ and the (NO₃⁻)₂ band at 1380 cm⁻¹ in addition to nitro and bridging bidentate nitrate (15, 16, 47–52). Flowing 0.08% NO/2% O₂ at 523 K produced the same adsorbates as those produced at 298 K, but at a higher formation rate than that at 298 K. The overlapping of Cu²⁺ <_O^O>N at 1251 cm⁻¹ with Cu²⁺ <_O^O>N-O at 1262 cm⁻¹ is due to the NO₂ asymmetric vibration of L262 cm⁻¹ is due to the NO₂ asymmetric vibration of Cu²⁺ <_O^O>N-O gives a lower intensity at 1262 cm⁻¹ than at 1570 cm⁻¹. The amount of adsorbed NO determined by the NO MS profile (not shown) is 0.50 mol per mole of Cu²⁺ at 523 K.

Exposure of CuO/Al₂O₃ to 0.08% NO at 523 K produced Cu²⁺ < $_{O}^{O}$ >N–O at 1570 and 1233 cm⁻¹, nitrito (Cu²⁺–O–N=O) at 1315 cm⁻¹, and chelating nitro Cu²⁺< $_{O}^{O}$ >N at

FIG. 5. In situ IR spectra produced from (a) flow of 0.08% NO + 2% O_2 + 97.92% He at 523 K, (b) flow of 0.08% NO followed by 2% O_2 addition at 523 K, and (c) flow of 0.08% NO + 2% O_2 + 97.92% He at 623 K over CuO/Al₂O₃.

1233 cm⁻¹. Addition of 2% O₂ to a 0.08% NO flow at 523 K resulted in (i) the formation of monodentate nitrate Cu²⁺– O–N $<^{O}_{O}$ at 1451 cm⁻¹ and (NO₃⁻)₂ at 1380 cm⁻¹ and (ii) the shift in wavenumber of Cu²⁺ $<^{O}_{O}$ >N–O from 1570 to 1590 cm⁻¹ and that of Cu²⁺ $<^{O}_{O}$ >N from 1233 to 1242 cm⁻¹. Formation of (NO₃⁻)₂ and Cu²⁺–O–N $<^{O}_{O}$ and an increase in the intensity of Cu²⁺ $<^{O}_{O}$ >N–O after O₂ addition suggests the successive oxidation of Cu²⁺ $<^{O}_{O}$ >N and Cu²⁺–O–N=O to the various forms of adsorbed nitrates.

The most interesting feature for 0.08% NO/2% O₂ coadsorption on CuO/Al₂O₃ at 623 K is the rapid formation of dominant (NO₃⁻)₂ centered at 1365 cm⁻¹. High temperature is responsible for the low intensity of Cu²⁺ <_O^O>N as well as its wavenumber shift at 623 K. This is further confirmed by the absence of Cu²⁺ <_O^O>N for NO/O₂ coadsorption at 723 K. The absence of gaseous NO₂ formation over CuO/Al₂O₃ indicated that these adsorbed nitrates and nitro groups are formed from the reaction of NO and O₂ on CuO without a gaseous NO₂ intermediate. The formation of Cu²⁺ < $_{O}^{O}$ >N and Cu²⁺ < $_{O}^{O}$ >N–O from NO/O₂ adsorption is thermodynamically favorable (53). The contribution of Al₂O₃ to adsorbate formation on CuO/Al₂O₃ was not significant as evidenced by low intensities of Al³⁺ < $_{O}^{O}$ >N at 1233 cm⁻¹, Al³⁺–O–N=O at 1315 cm⁻¹, Al³⁺–O>N–O at 1630 cm⁻¹, and Al³⁺ < $_{O}^{O}$ >N–O at 1590 cm⁻¹ in Fig. 5. The intensities of these adsorbates are less than 5% of those on CuO/Al₂O₃. Therefore, Cu sites are responsible for the formation of Cu²⁺(NO₃⁻)₂ from flowing 0.08% NO + 2% O₂ + 97.92% He over CuO/Al₂O₃.

Adsorption of NO₂/O₂, and NO₂ on CuO/Al₂O₃

Figure 6 compares the IR spectra of adsorbates produced from NO₂ and from NO₂/O₂ adsorption on CuO/Al₂O₃ at 523 K. Initial exposure of CuO/Al₂O₃ to 0.08% NO₂ + 2% O₂ + 97.92% He at 523 K produced Cu²⁺(NO₃⁻)₂ at 1380 cm⁻¹ first, then Cu²⁺< $_{O}^{O}$ >N–O at 1590 and 1561 cm⁻¹, $_{Cu^{2+}-O}^{Cu^{2+}-O}$ >N–O at 1620 cm⁻¹, and Cu²⁺< $_{O}^{O}$ >N centered at 1262 cm⁻¹. NO₂ adsorption alone cannot produce Cu²⁺(NO₃⁻)₂ at 1380 cm⁻¹; however, it produced primarily Cu²⁺< $_{O}^{O}$ >N–O. The simultaneous presence of

FIG. 6. In situ IR spectra of adsorbates produced from flow of 1.06% NO₂ and from flow of 0.08% NO₂ + 2% O₂ + 97.92% He over CuO/Al₂O₃ at 523 K for 12 min (thin solid lines were taken after He flush.)

 O_2 and NO_2 is required to produce $Cu^{2+}(NO_3^-)_2$ at 1380 cm⁻¹. This observation suggested that O_2 is necessary for $Cu^{2+}(NO_3^-)_2$ formation. The IR intensity of the band at 1262 cm⁻¹ for NO_2 as well as NO_2/O_2 adsorption was stronger than that for NO/O_2 adsorption. This band can be assigned to the overlap component of $Cu^{2+} <_{O}^{O} > N$ and adsorbed N_2O_3 (16). At 523 K, NO_2/O_2 adsorption produced a dominant $Cu^{2+} <_{O}^{O} > N-O$ band while the NO/O_2 adsorption produced an intense $Cu^{2+}(NO_3^-)_2$ band.

Pulsing C_3H_6 into Steady-State NO/O₂ Flow and Steady-State SCR Reaction of NO/ O_2/C_3H_6 on CuO/Al₂O₃

Figure 7 shows the MS profiles and *in situ* IR spectra taken while three consecutive $1\text{-cm}^3 \text{ C}_3\text{H}_6$ pulses were pulsed into the steady-state $0.08\% \text{ NO} + 2\% \text{ O}_2 + 97.92\%$ He flow at 723 K. Pulsing C_3H_6 decreased the NO and O_2 MS intensity (i.e., concentration) and increased the N₂,

CO₂, N₂O, H₂O, and NO₂ concentration. The MS profile of C₃H₆ led those of N₂, CO₂, N₂O, H₂O, and NO₂, consistent with the Langmuir–Hinshelwood mechanism (i.e., reactant adsorption followed by surface reaction and product desorption). Pulsing C₃H₆ also decreased the IR intensity of adsorbed Cu²⁺(NO₃⁻)₂ at 1365 cm⁻¹, indicating that this species may be the active adsorbate responsible for product formation. Gaseous CO₂ at 2358 and 2312 cm⁻¹ emerged as one of the products. Observation of =C-H and C-H bands around 3100–2900 cm⁻¹ was attributed to the incomplete consumption of C₃H₆. The band at 1561 cm⁻¹ was attributed to NO₂ asymmetric vibration in C₃H₇–NO₂ (30, 31, 33, 34, 54, 55). The IR intensity of adsorbed Cu²⁺(NO₃⁻)₂ reached the minimum at 65 s, when NO and O₂ approached the minimum concentration.

Figure 8a shows that exposure of CuO/Al₂O₃ to a 0.08% NO + 2% O₂ + 0.2% C₃H₆ + 97.72% He flow at 523 K produced an organic nitro compound (C₃H₇-NO₂) at 1593 and

FIG. 7. (a) MS profiles and (b) *in situ* IR spectra taken during pulsing of three consecutive 1-cm³ pulses of C_3H_6 into the steady-state flow of 0.08% NO + 2% O₂ + 97.92% He over CuO/Al₂O₃ at 723 K.

FIG. 8. (a) In situ IR spectra of adsorbates. (b) and (c) Integrated absorbance intensity as a function of time obtained from $\bar{A}_{1593} = \int_{1510}^{1780} A(\upsilon) d\upsilon$, $\bar{A}_{1466} = \int_{1410}^{1490} A(\upsilon) d\upsilon$, $\bar{A}_{1328} = \int_{1200}^{1370} A(\upsilon) d\upsilon$, $\bar{A}_{2156} = \int_{2124}^{2190} A(\upsilon) d\upsilon$, and $\bar{A}_{2237} = \int_{2200}^{2280} A(\upsilon) d\upsilon$, where A_i is the integrated absorbance intensity for species *i*. (d) MS profiles during switching the flow of 0.08% NO + 2% O₂ + 0.2% C₃H₆ + 97.72% He from bypass into the reactor at 523 K. (H₂O MS profile was enlarged by multiplying by 2.)

1328 cm⁻¹ (30, 31, 33, 34, 54, 55), an organic nitrito compound (C_3H_7 -ONO) at 1662 cm⁻¹ (30, 31, 33, 34, 54, 55), an CH₃COO⁻ at 1593 and 1466 cm⁻¹ (35, 36, 54–56), Cu⁺– CO at 2118 cm⁻¹ (25, 28), Cu⁰–CN at 2156 cm⁻¹ (28, 40, 41), Cu⁺–NCO at 2237 cm⁻¹ (28, 35, 57), the OH stretching band at around 3544 cm⁻¹, and C–H asymmetric stretching bands at 3107, 2998, 2950, and 2908 cm⁻¹ (54, 55). The presence of gaseous NO indicated that NO was not reduced/oxidized completely. Absorbance intensity versus time profiles in Figs. 8b and 8c showed that initial formation rate of C₃H₇–NO₂ and CH₃COO⁻ was greater than that of Cu⁰–CN and Cu⁺–NCO. MS analysis of reaction products in Fig. 8d shows that initial exposure of CuO/Al₂O₃ to a NO/O₂/C₃H₆ flow caused a high overshoot in N₂ formation, corresponding to the decrease of NO, C₃H₆, and O₂ concentrations. The H_2O formation profile was enlarged by multiplying by 2 in Fig. 8d.

Table 1 gives the steady-state NO, C_3H_6 , and O_2 conversion and N_2 selectivity results at different temperatures and reaction times. Increasing the temperature increased the NO, C_3H_6 , and O_2 conversion. N_2 selectivity increased slightly with increasing temperature from 95% to 97%. Our Cu/Al₂O₃ shows activity similar to those reported but with a difference in N_2 yield (27–29).

Figure 9 shows the IR spectra taken during steady-state SCR reaction on Cu/Al₂O₃. Reaction conditions and selectivity results are listed in Table 1. Increasing the temperature caused the intensities of C_3H_7 –NO₂, CH₃COO⁻, and gaseous CO₂ to increase. To delineate the change in the contour of the IR bands in the 1350–1700 cm⁻¹ region, the

TABLE 1

Temperature (K) and time on stream (min)	$0.08\% \ \mathrm{NO} + 2\% \ \mathrm{O_2} + 0.2\% \ \mathrm{C_3H_6} + 97.72\% \ \mathrm{He}$				
	Conversion (%)			Conversion of	No selectivity
	NO	C_3H_6	O_2	NO to N_2 (%) ^{<i>a</i>}	(%) ^b
523, 10	26.9	30.3	19.3	25.9	96.5
623, 15	35.7	35.0	21.6	34.2	95.7
673, 10	87.6	22.5	32.9	84.5	96.5
698, 10	90.4	29.4	33.8	88.0	97.4
723, 20	96.4	99.0	37.3	94.1	97.6
773, 25	100	100	39.1	97.3	97.3

 $\label{eq:conversion} \begin{array}{l} Reactant\ Conversion\ and\ N_2\ Selectivity\ during\ Steady-State\ 0.08\%\ NO\ +\ 6.67\%\ O_2\ +\ 0.2\%\ C_3H_6\ +\ 93.05\%\ He\ Flow\ on\ CuO/Al_2O_3\ at\ Various\ Temperatures \end{array}$

^{*a*} Conversion of NO to N₂ (%) = $2 \pmod{N_2}/mol NO_{in} \times 100$.

 b N2 selectivity (%) = 2(mol N2)/(mol NO_{in}-mol NO_{out})~\times 100.

FIG. 9. Steady-state in situ IR spectra of adsorbates produced from flow of 0.08% NO + 2% O₂ + 0.2% C₃H₆ + 97.72% He over CuO/Al₂O₃ at various temperatures.

catalyst was exposed to C₃H₆ and automobile exhaust simulated gas (15.34% CO₂, 0.7765% CO, 0.5392% O₂, 0.2673% H_2 , and 0.0865% C_3H_8 with He balance), respectively. Comparison of the IR spectra of adsorbates from C₃H₆ to that of NO/O₂/C₃H₆ adsorption on CuO/Al₂O₃ indicated that 1328, 1466, and 1593 cm^{-1} bands, attributed to C₃H₇-NO₂ and CH₃COO⁻, cannot be formed from C₃H₆ adsorption alone. CO₂ adsorption from simulated gas on CuO/ Al_2O_3 produced chelating carbonate $(Cu^{2+}{<^{O}_{O}}{>}C{-}O)$ and monodentate carbonate $(Cu^{2+}{-}O{-}C{<^{O}_{O}})$ at 1578 and 1328 cm^{-1} , respectively (48). The ratio of IR intensity of the band at 1578 cm⁻¹ to that of the band at 1328 cm⁻¹ was 0.8 for carbonate; however, the ratio was 5.2 for $NO/O_2/C_3H_6$ reaction on CuO/Al₂O₃ at 523 K. The broadening of the 1593 and 1328 cm⁻¹ bands at 623 and 723 K can be attributed to overlapping of carbonate bands with the C₃H₇-NO₂ and CH₃COO⁻ bands. The broadening of these bands is accompanied by strong gaseous CO₂ bands at 723 K, further confirming the contribution of carbonates from CO_2 adsorption.

The obvious effects of temperature are (i) the increase in the CH_3COO^- intensity at 1460 cm⁻¹ and (ii) the shift in the wavenumber of the band from 1593 to 1560 cm^{-1} . To further unravel the dynamic behavior of C₃H₇-NO₂ at 1560 and 1314 cm⁻¹ and of CH₃COO⁻ at 1460 cm⁻¹, the C₃H₆ flow was stopped while NO, O₂, and He flows were kept at steady state and 723 K. Figure 10 shows the variation of in situ IR spectra of adsorbates as a function of time after the C_3H_6 flow was stopped at 723 K. Disappearance of C₃H₆ resulted in (i) immediate disappearance of C_3H_6 -related bands and (ii) a gradual decay of C_3H_7 -NO₂ and CH_3COO^- . Upon disappearance of the C₃H₇-NO₂ and CH₃COOH species, gaseous NO_2 and adsorbed $Cu^{2+}(NO_3^-)_2$ emerged. The appearance of C₃H₇-NO₂ at 1560 cm⁻¹ at 723 K is consistent with that of C_3H_7 -NO₂ at 1561 cm⁻¹ during the C_3H_6 pulse in Fig. 7b.

FIG. 10. Variation of *in situ* IR spectra of adsorbates as a function of time after shut-off of C_3H_6 from 0.08% NO + 2% O₂ + 0.2% C₃H₆ + 97.72% He flow over CuO/Al₂O₃ at 723 K.

FIG. 11. In situ IR spectra taken during exposure of fresh CuO/Al₂O₃, NO/O₂-treated CuO/Al₂O₃, and SCR-treated CuO/Al₂O₃ to CO pulse (top spectrum for each catalyst) and after exposure to He flowing at 75 cm³/min (bottom spectrum for each catalyst) for 5 min at 298 K. Fresh CuO/Al₂O₃ is produced from the thermal decomposition of Cu(NO₃) on Al₂O₃ in He flow; NO/O₂-treated CuO/Al₂O₃ is obtained after NO/O₂, NO₂, NO₂/O₂ desorption and subsequent TPD studies; and SCR-treated CuO/Al₂O₃ is produced after SCR reaction at 773 K.

CO Chemisorption on CuO/Al₂O₃

Pulsing CO on fresh CuO/Al₂O₃ at 298 K produced $Cu^{2+}(CO)$ at 2172 cm⁻¹ (25, 28, 37), Cu⁺(CO) at 2118 cm⁻¹, and Cu⁰(CO) at 2096 cm⁻¹ (25), as shown in Fig. 11. Each CO pulse consists of 10 cm³ of 99.994% CO. The IR spectra were collected immediately after the CO pulse. Pulsing CO allows the determination of the amount of CO adsorbed on the catalyst surface. CO preferably adsorbed on Cu⁰ initially

and then on Cu⁺ over SCR-treated CuO/Al₂O₃. Flowing He over adsorbed CO species decreased the IR intensities of all species, consistent with the observations on Cu/Al₂O₃ at 300 K (25). No adsorbed CO was observed on γ -Al₂O₃ under the conditions of this study. Adsorption of CO on α -Al₂O₃ has been reported to give a band at 2150 cm⁻¹ (58). The IR band intensity corresponds to the concentration of adsorbates, also reflecting the number of specific adsorption sites. However, the lack of extinction coefficients for these various forms of adsorbed CO does not allow the use of these adsorbate intensities to determine the number of Cu⁰, Cu⁺, and Cu²⁺ sites. Qualitatively speaking, exposure of CuO/Al₂O₃ to the NO/O₂ flow decreased more Cu⁺ than Cu⁰ sites and converted a portion of Cu⁰/Cu⁺ sites to Cu²⁺ sites; the SCR reduced almost all Cu²⁺ sites to Cu⁰/Cu⁺ sites. Assuming the extinction coefficient for adsorbed CO is independent of its coverage, a significant increase in adsorbate intensity reflects the increase in the number of adsorption sites. The amount of CO adsorbed is determined to be 29.5 µmol for the SCR-treated catalyst and 2.5 µmol for the fresh CuO/Al₂O₃, indicating the SCR not only reduced Cu²⁺ to Cu⁺/Cu⁰ but also increased the dispersion of Cu⁰/Cu⁺ species on the Al₂O₃ surface.

DISCUSSION

Formation of Adsorbed NO_x from NO/O₂ and NO₂/O₂

The broad bands in the regions of $1500-1670 \text{ cm}^{-1}$ and $1200-1350 \text{ cm}^{-1}$ observed in this study result from overlapping of multiple bands. Although most of these bands cannot be unambiguously assigned, the observation of a singly

symmetric band at 1380 cm⁻¹ in Figs. 4, 6, and 7 as well as at 1242 cm⁻¹ in Fig. 5 allows assignment of these bands to specific NO_x species. Band assignment here follows the classical works reported by Nakamoto (47) and Davydov (48), previous literature (21–45, 49–52), and the IR spectra of Cu(NO₃)₂ and Cu(NO₃)₂ · H₂O/Al₂O₃ in Fig. 1.

Adsorption studies shown in Fig. 5 demonstrate that NO/O₂ adsorption on CuO/Al₂O₃ led to immediate formation of Cu²⁺ <^O_O>N and gradual formation of Cu²⁺ (NO₃⁻)₂ at 523 K; Fig. 6 shows that NO₂/O₂ adsorption led to immediate formation of Cu²⁺ (NO₃⁻)₂ and gradual formation of Cu²⁺ $_{O}^{-}$ >N–O, Cu²⁺ $_{O}^{-}$ >N–O, and Cu²⁺ $_{O}^{-}$ >N. NO₂ adsorption alone did not lead to the formation of Cu²⁺ (NO₃⁻)₂; NO₂ adsorption produced only Cu²⁺ $_{O}^{-}$ >N–O, and Cu²⁺ $_{O}^{-}$ >N species. It is hoped that the adsorbate dynamics will provide insight into the reaction pathways during NO/O₂ adsorption and the SCR of NO_x in the presence of O₂.

Figure 12 illustrates the pathway for the formation of NO_x species. The thickness of the arrow indicates the rate of each step (e.g., thicker arrow for higher rate). The Cu site which is associated with $(NO_3^-)_2$ appears to be in the

FIG. 12. Proposed pathway for (a) 0.08% NO + 2% O₂ adsorption and (b) 1.06% NO₂ and 0.08% NO₂ + 2% O₂ adsorption over CuO/Al₂O₃.

2+ state since (i) the IR spectrum of these adsorbed $(NO_3^-)_2$ species in Figs. 5 and 6 resembles that of $Cu^{2+}(NO_3^-)_2$ and (ii) NO/O₂ exposure not only produced $Cu^{2+}(NO_3^-)_2$ but also caused a significant increase in Cu^{2+} sites, as shown in Fig. 11.

Formation of $Cu^{2+}(NO_3^-)_2$ from NO/O₂ adsorption can be written as a series of well-defined steps, (a), (b), (c), and (d) in Fig. 12. Step (a) is evidenced by the formation of $Cu^{2+} <_{O}^{O} > N$ from NO adsorption on CuO/Al_2O_3 shown in Fig. 5. Step (b) describes the growth of $Cu^{2+} <_{O}^{O} > N-O$ upon addition of O₂. Steps (c) and (d) are supported by the observation of (i) rapid growth of $Cu^{2+}(NO_3^-)_2$ at high temperature (i.e., 623 K) and (ii) conversion of $Cu^{2+} <_{O}^{O} > N-O$ to $Cu^{2+}(NO_3^-)_2$ upon increasing the temperature from 523 to 623 K (not shown) (59).

All of the steps involved in the formation of $Cu^{2+} <_{O}^{O} > N-O$ from NO/O₂, NO₂/O₂, and NO₂ are thermodynamically favorable with a large negative value of ΔG° at 773 K (53). The formation of these adsorbed NO_x species from NO/O₂ rather than from pure NO₂ appears to be related to the nature of the site for adsorption rather than the thermodynamic driving force. The absence of Cu⁺(NO) at tem-

peratures greater than 523 K suggests that Cu^+ and possibly Cu^0 sites are oxidized to Cu^{2+} during the NO/O₂ and NO₂/O₂ adsorption processes.

SCR Pathway

IR results of pulsing C_3H_6 and steady-state SCR studies in Figs. 7-10 show that the catalyst surface states and their adsorbates are strongly influenced by reaction environment (i.e., partial pressures of reactants and reaction temperature). Figure 13a illustrates the reaction pathways for the pulse SCR on CuO/Al₂O₃ according to the observed adsorbates and products. The NO/O2 steady-state flow simulates the exhaust composition of lean burn combustion in which NO and O₂ adsorption on Cu/Al₂O₃ produced $Cu^{2+}(NO_3^-)_2$. These nitrates adsorbed primarily on Cu²⁺. Each mole of Cu²⁺ on Al₂O₃ adsorbed approximately 0.50 mol of NO at 523 K. Increasing the temperature from 298 to 723 K decreased the amount of NO adsorbed on Cu/Al₂O₃. Pulsing C₃H₆ not only removed $(NO_3^-)_2$ adsorbed on Cu²⁺ species but also led to reduction of Cu²⁺ to Cu⁰/Cu⁺ and CO₂ formation. CuO/Al₂O₃ not only serves as a good sorbent for NO/O₂ but also exhibits high selectivity

FIG. 13. Proposed pathway for (a) reaction between adsorbed $(NO_3^-)_2$ with C_3H_6 pulse and (b) steady-state SCR of NO with C_3H_6 in the presence of O_2 over CuO/Al₂O₃.

for converting $(NO_3^-)_2$ to N_2 with C_3H_6 . Different forms of nitrates on Al_2O_3 (36) and Rh–Al–MCM-41 (39) have also been recently found to react with C_3H_6 .

The key difference in adsorbates and Cu surface state between pulse and steady-state SCR can be simply attributed to the competitive adsorption of reactants. In the pulse SCR, NO/O₂ oxidizes the Cu in CuO/Al₂O₃ to Cu²⁺, adsorbing (NO₃)₂ prior to the C₃H₆ pulse entering the reactor. In the steady-state SCR in Fig. 13b, C₃H₆ competes over NO/O₂ for adsorption, keeping Cu in either the Cu⁰ or Cu⁺ state and allowing the formation of C₃H₇–NO₂ and CH₃COO⁻, as potential intermediates. These intermediates appear to be associated with either Cu⁰/Cu⁺ or Al₂O₃ surface sites since the catalyst contained fewer Cu²⁺ sites following the SCR as evidenced by the CO adsorption results in Fig. 11.

The proposed scheme in Fig. 13b suggests that adsorbed C₃H₇-NO₂ may be further converted to adsorbed Cu⁰-CN and Cu⁺-NCO species. The high initial rate of C₃H₇-NO₂ formation compared to that of Cu⁰-CN formation in Figs. 8b and 8c further supports the conclusion that the reaction sequence proceeds via C₃H₇-NO₂ and then Cu⁰-CN and Cu⁺-NCO, since the proceeding intermediate has a higher initial rate than the subsequent intermediate in a consecutive reaction (60). The absence of C₃H₇-NO₂/CH₃COOH in the gas phase and the immediate disappearance of these species following termination of the C₃H₆ flow suggest that these species are unstable and may be reaction intermediates. No definite evidence is available to either support or dispute C₃H₅-NO₂/CH₃COO⁻ as active intermediates for the reaction. Although R-NO₂, R-ONO, and CH_3COO^- produced from the NO/O₂/C₃H₆ flow have been found to produce N₂ and CO₂ during their exposure to NO/O₂ (3, 30, 33, 34, 36, 61, 62), their role in the reaction mechanism needs to be further verified by using an isotopic tracing technique under reaction conditions where all the reactants and products are present.

CONCLUSIONS

Infrared spectroscopy coupled with mass spectroscopy allows the determination of the dynamic behavior of adsorbate and product formation during NO/O₂ adsorption, decomposition, and NO/O₂/C₃H₆ reaction. Adsorption studies from 298 to 723 K show that adsorption of NO/O₂, NO₂/O₂, and NO₂ produced various adsorbed nitrates on CuO/Al₂O₃. NO/O₂ adsorption led to immediate formation of Cu²⁺ <^O₀>N and gradual formation of Cu²⁺ (NO₃⁻)₂; NO₂/O₂ adsorption led to rapid formation of Cu²⁺ (NO₃⁻)₂ and gradual formation of Cu^{2+} ·O₀>N–O, Cu²⁺ <^O₀>N–O, and Cu²⁺ <^O₀>N; NO₂ adsorption produced only Cu^{2+} ·O₀>N–O, Cu²⁺ <^O₀>N–O, and Cu²⁺ <^O₀>N species. TPD studies show that adsorbed (NO₃⁻)₂, the dominant nitrate, decomposed to N₂, N₂O, and NO at 644 K.

Steady-state NO/O₂/C₃H₆ reaction on CuO/Al₂O₃ produced adsorbed C₃H₇-NO₂, C₃H₅-ONO, CH₃COO⁻, Cu⁺-NCO, Cu⁰–CN, and Cu⁺–CO species, and N₂, CO₂, and H₂O as products. The dynamic behavior of adsorbates under transient conditions suggests that the steady-state SCR proceeds via adsorbed C₃H₇-NO₂, Cu⁰-CN, and Cu⁺-NCO intermediates on Cu⁰/Cu⁺ sites. Transient formation of N₂ from NO/O₂ adsorption on the fresh Cu/Al₂O₃ catalyst at 523 K was attributed to N–N bond formation on Cu⁰ site from decomposed nitrate species. Production of N2 is accompanied by the formation of a Cu^{2+} site, adsorbing NO and O_2 as $(NO_3^-)_2$. Pulsing C_3H_6 into NO/O_2 over $(NO_3^-)_2$ on the Cu²⁺ site not only reduced Cu²⁺ to Cu⁺/Cu⁰ but also converted $(NO_3^-)_2$ to N₂ and N₂O. Varying the reactant concentration changes the adsorbate concentration and shifts the reaction pathways for SCR.

ACKNOWLEDGMENTS

Although the research described in this article has been funded wholly by the United States Environmental Protection Agency under assistant agreement R823529-01-0 to the University of Akron, it has not been subject to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

REFERENCES

- 1. Shelef, M., Chem. Rev. 95, 209 (1995).
- 2. Iwamoto, M., Catal. Today 29, 29 (1996).
- 3. Yokoyama, C., and Misono, M., J. Catal. 150, 9 (1994).
- Halasz, I., Brenner, A., Ng, K. Y. S., and Hou, Y., J. Catal. 161, 359 (1996).
- 5. Sun, T., Fokema, M. D., and Ying, J. Y., Catal. Today 33, 252 (1997).
- 6. Gervasini, A., Appl. Catal. B14, 147 (1997).
- Kijlstra, W. S., Brands, D. S., Smit, H. I., Poels, E. K., and Bliek, A., J. Catal. 171, 219 (1997).
- 8. Hwang, I. C., Kim, D. H., and Woo, S. I., Catal. Today 44, 47 (1998).
- 9. Acke, F., and Skoglundh, M., *J. Phys. Chem. B* 97, 972 (1999).
- 10. Burch, R., Fornasiero, P., and Watling, T. C., J. Catal. 176, 204 (1998).
- 11. Valyon, J., and Hall, W. K., J. Phys. Chem. 97, 1204 (1993).
- 12. Li, Y., and Armor, J. N., Appl. Catal. B 5, L257 (1995).
- Hoost, T. E., Laframboise, K. A., and Otto, K., *Appl. Catal. B* 7, 79 (1995).
- Bethke, K. A., Li, C., Kung, M. C., Yang, B., and Kung, H. H., *Catal. Lett.* 31, 287 (1995).
- Adelman, B. J., Beutel, T., Lei, G.-D., and Sachtler, W. M. H., *J. Catal.* 158, 327 (1996).
- Aylor, A. W., Lobree, L. J., Reimer, J. A., and Bell, A. T., *J. Catal.* 170, 390 (1997).
- Ali, A., Alvarez, W. E., Loughran, C. J., and Resasco, D. E., *Appl. Catal. B* 14, 13 (1997).
- Lombardo, E. A., Sill, G. A., d'Itri, J. L., and Hall, W. K., *J. Catal.* 173, 440 (1998).
- 19. Chang, Y. F., and McCarty, J. G., J. Catal. 165, 1 (1997).
- 20. Almusaiteer, K., and Chuang, S. S. C., J. Catal. 184, 189 (1999).
- Konduru, M. K., and Chuang, S. S. C., J. Phys. Chem. B 103, 5802 (1999).
- 22. London, J. W., and Bell, A. T., J. Catal. 31, 96 (1973).
- 23. Gandhi, H. S., and Shelef, M., J. Catal. 28, 1 (1973).

- 24. Hierl, R., Urbach, H.-P., and Knözinger, H., *J. Chem. Soc., Faraday Trans.* **355**, 88 (1992).
- 25. Dandekar, A., and Vannice, M. A., J. Catal. 178, 621 (1998).
- Salama, T. M., Ohnishi, R., and Ichikawa, M., J. Chem. Soc., Faraday Trans. 92, 301 (1996).
- Centi, G., Perthoner, S., Biglino, D., and Giamello, E., *J. Catal.* 151, 75 (1995).
- Radtke, F., Koeppel, R. A., Minardi, E., and Baiker, A., *J. Catal.* 167, 127 (1997).
- Dekker, F. H. M., Kraneveld, S., Bliek, A., Kapteijn, F., and Moulijn, J. A., J. Catal. 170, 168 (1997).
- 30. Tanaka, T., Okuhara, T., and Misono, M., Appl. Catal. B 4, L1 (1994).
- Yasuda, H., Miyamoto, T., and Misono, M., *in* "ACS Symposium Series No. 587, Reduction of Nitrogen Oxide Emission" (U. S. Ozkan, S. K. Agarwal, and G. Marcelin, Eds.), p. 110. Am. Chem. Soc., Washington, DC, 1995.
- 32. Li, Y., Slager, T. L., and Armor, J. N., J. Catal. 150, 388 (1994).
- Hayneys, N. W., Joyner, R. W., Shipro, E. S., *Appl. Catal. B* 8, 343 (1996).
- Satsuma, A., Enjoji, T., Shimizu, K.-I., Sato, K., Yoshida, H., and Hattori, T., J. Chem. Soc., Faraday Trans. 94, 301 (1998).
- 35. Caption, D. K., and Amiridis, M. D., J. Catal. 184, 377 (1999).
- Shimizu, K.-I., Kawabata, H., Satsuma, A., and Hattori, T., J. Phys. Chem. B 103, 5240 (1999).
- Anderson, J. A., Márquez-Alvarez, C., López-Muñoz, M. J., Rodríguez-Romas, I., and Guerrero-Ruiz, A., *Appl. Catal. B* 14, 189 (1997).
- Ukisu, Y., Sato, S., Abe, A., and Yoshida, K., *Appl. Catal. B* 2, 147 (1993).
- 39. Long, R. Q., and Yang, R. T., J. Phys. Chem. B 103, 2232 (1999).
- Li, C., Bethke, K. A., Kung, H. H., and Kung, M. C., J. Chem. Soc., Chem. Commun. 8, 813 (1995).
- Lobree, L. J., Aylor, A. W., Reimer, J. A., and Bell, A. T., *J. Catal.* 169, 188 (1997).

- 42. Chuang, S. S. C., and Tan, C.-D., J. Catal. 173, 95 (1998).
- 43. Vratny, F., Appl. Spectrosc. 13, 59 (1959).
- 44. Addison, C. C., and Gatehouse, B. M., J. Chem. Soc. 613 (1960).
- 45. Ferraro, J. R., J. Mol. Spectrosc. 99, 4 (1960).
- 46. Xie, Y.-C., and Tang, Y.-Q., Adv. Catal. 37, 1 (1990).
- Nakamoto, K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 4th ed. Wiley, New York, 1986.
- Davydov, A. A., *in* "Infrared Spectra of Adsorbed Species on the Surface of Transition Metal Oxides" (C. H. Rochester, Ed.), Wiley, England, 1990.
- 49. Laane, J., and Ohlsen, J. R., Prog. Inorg. Chem. 27, 465 (1980).
- 50. Outka, D. A., and Madix, R. J., Surf. Sci. 179, 1 (1987).
- Hadjiivanov, K., Klissurski, D., Ramis, G., and Busca, G., *Appl. Catal.* B 7, 251 (1996).
- Delahay, G., Coq, B., Ensuque, E., and Figuéras, F., *Langmuir* 13, 5588 (1997).
- Trout, B. L., Chakraborty, A. K., and Bell, A. T., J. Phys. Chem. 100, 17582 (1996).
- Colthup, N. B., Daly, L. H., and Wiberley, S. E., "Introduction to Infrared and Raman Spectroscopy," 3rd ed. Academic Press, San Diego, 1990.
- Silverstein, R. M., and Webster, F. X., "Spectrometric Identification of Organic Compounds," 6th ed. Wiley, England, 1997.
- Escribano, V. S., Busca, G., and Lorenzelli, V., *J. Phys. Chem.* 94, 8939 (1990).
- 57. Kiss, J., and Solymosi, F., J. Catal. 179, 277 (1998).
- 58. Morterra, C., Magnacca, G., and Favero, N. D., Langmuir 9, 642 (1993).
- Chi, Y., Preliminary research of Ph.D. thesis, The University of Akron, 1999.
- Levenspiel, O., "Chemical Reaction Engineering," 3rd ed., p. 55. Wiley, New York, 1999.
- Djonev, B., Tsyntsarski, B., Klissurski, D., and Hadjiivanov, K., J. Chem. Soc., Faraday Trans. 93, 4055 (1997).
- 62. Okuhara, T., Hasada, Y., and Misono, M., Catal. Today 35, 83 (1997).